Machine Learning Engineer Nanodegree

Model Evaluation & Validation

Project 1: Predicting Boston Housing Prices

Welcome to the first project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this project. You will not need to modify the included code beyond what is requested. Sections that begin with 'Implementation' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

Note: Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

Getting Started

In this project, you will evaluate the performance and predictive power of a model that has been trained and tested on data collected from homes in suburbs of Boston, Massachusetts. A model trained on this data that is seen as a good fit could then be used to make certain predictions about a home — in particular, its monetary value. This model would prove to be invaluable for someone like a real estate agent who could make use of such information on a daily basis.

The dataset for this project originates from the UCI Machine Learning Repository. The Boston housing data was collected in 1978 and each of the 506 entries represent aggregated data about 14 features for homes from various suburbs in Boston, Massachusetts. For the purposes of this project, the following preprocessing steps have been made to the dataset:

  • 16 data points have an 'MEDV' value of 50.0. These data points likely contain missing or censored values and have been removed.
  • 1 data point has an 'RM' value of 8.78. This data point can be considered an outlier and has been removed.
  • The features 'RM', 'LSTAT', 'PTRATIO', and 'MEDV' are essential. The remaining non-relevant features have been excluded.
  • The feature 'MEDV' has been multiplicatively scaled to account for 35 years of market inflation.

Run the code cell below to load the Boston housing dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported.

In [3]:
# Import libraries necessary for this project
import numpy as np
import pandas as pd
import visuals as vs # Supplementary code
from sklearn.cross_validation import ShuffleSplit

# Pretty display for notebooks
%matplotlib inline

# Load the Boston housing dataset
data = pd.read_csv('housing.csv')
prices = data['MEDV']
features = data.drop('MEDV', axis = 1)
    
# Success
print "Boston housing dataset has {} data points with {} variables each.".format(*data.shape)
Boston housing dataset has 489 data points with 4 variables each.

Data Exploration

In this first section of this project, you will make a cursory investigation about the Boston housing data and provide your observations. Familiarizing yourself with the data through an explorative process is a fundamental practice to help you better understand and justify your results.

Since the main goal of this project is to construct a working model which has the capability of predicting the value of houses, we will need to separate the dataset into features and the target variable. The features, 'RM', 'LSTAT', and 'PTRATIO', give us quantitative information about each data point. The target variable, 'MEDV', will be the variable we seek to predict. These are stored in features and prices, respectively.

Implementation: Calculate Statistics

For your very first coding implementation, you will calculate descriptive statistics about the Boston housing prices. Since numpy has already been imported for you, use this library to perform the necessary calculations. These statistics will be extremely important later on to analyze various prediction results from the constructed model.

In the code cell below, you will need to implement the following:

  • Calculate the minimum, maximum, mean, median, and standard deviation of 'MEDV', which is stored in prices.
    • Store each calculation in their respective variable.
In [4]:
# TODO: Minimum price of the data
minimum_price = np.min(prices)

# TODO: Maximum price of the data
maximum_price = np.max(prices)

# TODO: Mean price of the data
mean_price = np.mean(prices)

# TODO: Median price of the data
median_price = np.median(prices)

# TODO: Standard deviation of prices of the data
std_price = np.std(prices)

# Show the calculated statistics
print "Statistics for Boston housing dataset:\n"
print "Minimum price: ${:,.2f}".format(minimum_price)
print "Maximum price: ${:,.2f}".format(maximum_price)
print "Mean price: ${:,.2f}".format(mean_price)
print "Median price ${:,.2f}".format(median_price)
print "Standard deviation of prices: ${:,.2f}".format(std_price)
Statistics for Boston housing dataset:

Minimum price: $105,000.00
Maximum price: $1,024,800.00
Mean price: $454,342.94
Median price $438,900.00
Standard deviation of prices: $165,171.13

Question 1 - Feature Observation

As a reminder, we are using three features from the Boston housing dataset: 'RM', 'LSTAT', and 'PTRATIO'. For each data point (neighborhood):

  • 'RM' is the average number of rooms among homes in the neighborhood.
  • 'LSTAT' is the percentage of homeowners in the neighborhood considered "lower class" (working poor).
  • 'PTRATIO' is the ratio of students to teachers in primary and secondary schools in the neighborhood.

Using your intuition, for each of the three features above, do you think that an increase in the value of that feature would lead to an increase in the value of 'MEDV' or a decrease in the value of 'MEDV'? Justify your answer for each.
Hint: Would you expect a home that has an 'RM' value of 6 be worth more or less than a home that has an 'RM' value of 7?

Answer:

-RM: I would expect the price (MEDV) to increase as the number of rooms (RM) increases. All else equal, the larger the house the more rooms we can expect. Larger homes typically cost more also when keeping all other factors the same.

-LSTAT: The larger the percentage of lower class homeowners (LSTAT) the lower the expected price (MEDV). This is because it is reasonable to assume that someone who is considered to be part of the working poor will have limited financial resources available for the purchase of a home. Therefore, it is safe to assume that neighborhoods with relatively higher levels of poor people will have a lower average price of a home.

-PTRATIO: This one is a little ambiguous. On the one hand, a high ratio may indicate a neighborhood that is very much in demand as school districts with good reputations will attract more families, hence putting upward pressure on homes in the area. However, it may also indicate a shortage of teachers in the area which would have a negative impact on price. Similarly, a low ratio may attract more families looking for smaller class sizes but may also indicate a region with low attendence and high dropout rates; i.e. the ratio is low for good reason. If I had to guess, I would expect the ratio of student:teacher to be negatively related to price.

Finally, since we have ignored the time component of the data, we need to keep in mind that these relationships may have been changing over time as well.


Developing a Model

In this second section of the project, you will develop the tools and techniques necessary for a model to make a prediction. Being able to make accurate evaluations of each model's performance through the use of these tools and techniques helps to greatly reinforce the confidence in your predictions.

Implementation: Define a Performance Metric

It is difficult to measure the quality of a given model without quantifying its performance over training and testing. This is typically done using some type of performance metric, whether it is through calculating some type of error, the goodness of fit, or some other useful measurement. For this project, you will be calculating the coefficient of determination, R2, to quantify your model's performance. The coefficient of determination for a model is a useful statistic in regression analysis, as it often describes how "good" that model is at making predictions.

The values for R2 range from 0 to 1, which captures the percentage of squared correlation between the predicted and actual values of the target variable. A model with an R2 of 0 always fails to predict the target variable, whereas a model with an R2 of 1 perfectly predicts the target variable. Any value between 0 and 1 indicates what percentage of the target variable, using this model, can be explained by the features. A model can be given a negative R2 as well, which indicates that the model is no better than one that naively predicts the mean of the target variable.

For the performance_metric function in the code cell below, you will need to implement the following:

  • Use r2_score from sklearn.metrics to perform a performance calculation between y_true and y_predict.
  • Assign the performance score to the score variable.
In [5]:
# TODO: Import 'r2_score'
from sklearn.metrics import r2_score

def performance_metric(y_true, y_predict):
    """ Calculates and returns the performance score between 
        true and predicted values based on the metric chosen. """
    
    # TODO: Calculate the performance score between 'y_true' and 'y_predict'
    score = r2_score(y_true, y_predict)
    
    # Return the score
    return score

Question 2 - Goodness of Fit

Assume that a dataset contains five data points and a model made the following predictions for the target variable:

True Value Prediction
3.0 2.5
-0.5 0.0
2.0 2.1
7.0 7.8
4.2 5.3

Would you consider this model to have successfully captured the variation of the target variable? Why or why not?

Run the code cell below to use the performance_metric function and calculate this model's coefficient of determination.

In [6]:
# Calculate the performance of this model
score = performance_metric([3, -0.5, 2, 7, 4.2], [2.5, 0.0, 2.1, 7.8, 5.3])
print "Model has a coefficient of determination, R^2, of {:.3f}.".format(score)
Model has a coefficient of determination, R^2, of 0.923.

Answer:

I would consider the model to be a great predictor of the explanatory variable. The R^2 value of 0.923 is quite high, close to the perfect fit value of 1. A high R^2 value such as this one indicates that a high amount of the variation in the response variable is explained by the model.

Implementation: Shuffle and Split Data

Your next implementation requires that you take the Boston housing dataset and split the data into training and testing subsets. Typically, the data is also shuffled into a random order when creating the training and testing subsets to remove any bias in the ordering of the dataset.

For the code cell below, you will need to implement the following:

  • Use train_test_split from sklearn.cross_validation to shuffle and split the features and prices data into training and testing sets.
    • Split the data into 80% training and 20% testing.
    • Set the random_state for train_test_split to a value of your choice. This ensures results are consistent.
  • Assign the train and testing splits to X_train, X_test, y_train, and y_test.
In [7]:
# TODO: Import 'train_test_split'
from sklearn.cross_validation import train_test_split

# TODO: Shuffle and split the data into training and testing subsets
X_train, X_test, y_train, y_test = train_test_split(features, prices, test_size=0.2, random_state=0)

# Success
print "Training and testing split was successful."
Training and testing split was successful.

Question 3 - Training and Testing

What is the benefit to splitting a dataset into some ratio of training and testing subsets for a learning algorithm?
Hint: What could go wrong with not having a way to test your model?

Answer:

Splitting the data allows us to estimate/train the model on a dataset and then test how accurate the model is on out of sample data that the model was not exposed to. This can provide confidence on how well the model performs for prediction and prevents overfitting, since it is quite easy to achieve high scores on training data as opposed to testing data.


Analyzing Model Performance

In this third section of the project, you'll take a look at several models' learning and testing performances on various subsets of training data. Additionally, you'll investigate one particular algorithm with an increasing 'max_depth' parameter on the full training set to observe how model complexity affects performance. Graphing your model's performance based on varying criteria can be beneficial in the analysis process, such as visualizing behavior that may not have been apparent from the results alone.

Learning Curves

The following code cell produces four graphs for a decision tree model with different maximum depths. Each graph visualizes the learning curves of the model for both training and testing as the size of the training set is increased. Note that the shaded region of a learning curve denotes the uncertainty of that curve (measured as the standard deviation). The model is scored on both the training and testing sets using R2, the coefficient of determination.

Run the code cell below and use these graphs to answer the following question.

In [8]:
# Produce learning curves for varying training set sizes and maximum depths
vs.ModelLearning(features, prices)

Question 4 - Learning the Data

Choose one of the graphs above and state the maximum depth for the model. What happens to the score of the training curve as more training points are added? What about the testing curve? Would having more training points benefit the model?
Hint: Are the learning curves converging to particular scores?

Answer:

Looking at the first graph with a max_depth of 1, we can see that as more training points are added, the training curve decreases before hitting a plateau quite quickly and converging to a value close to 0.5. This decreasing trend and low final score could be because the underlying data is too complex for the model to represent it and adding the points only makes it harder for a model with fixed complexity to fit the additional data points.

The testing curve increases as more data points are added before flattening out at the same level of the training curve. This behaviour is almost a mirror reflection of the training curve and shows that as the number of points increases, the gap between the two curves and variance decrease, although the final score is still not that high.

Adding additional training points will not improve the model, in order to improve upon this value, we must increase the complexity of the model.

Complexity Curves

The following code cell produces a graph for a decision tree model that has been trained and validated on the training data using different maximum depths. The graph produces two complexity curves — one for training and one for validation. Similar to the learning curves, the shaded regions of both the complexity curves denote the uncertainty in those curves, and the model is scored on both the training and validation sets using the performance_metric function.

Run the code cell below and use this graph to answer the following two questions.

In [9]:
vs.ModelComplexity(X_train, y_train)

Question 5 - Bias-Variance Tradeoff

When the model is trained with a maximum depth of 1, does the model suffer from high bias or from high variance? How about when the model is trained with a maximum depth of 10? What visual cues in the graph justify your conclusions?
Hint: How do you know when a model is suffering from high bias or high variance?

Answer:

At a depth of 1, the model suffers from high bias. At this level, we are getting a relatively small difference between training and validation scores, i.e. there is very little variance between iterations. However, the overall score is not that great (high bias) and the model may be suffering from underfitting. Overall, the model is not complex enough to fully capture the complexity of the underlying data.

Model suffers from high variance at a depth of 10; the divergence between the scores is evident, with the training score increasing close to 1 and validation score actually dropping off. This large gap between the two curves indicates overfitting and shows a very high sensitivity to the specific training set used.

The visual cues we can look for to identify high bias is a low overall score for both curves, indicating a poor fit despite consistent (low variance) between the results as in graph 1. A large gap between both curves identifies high variance in the model and can indicate overfitting.

Question 6 - Best-Guess Optimal Model

Which maximum depth do you think results in a model that best generalizes to unseen data? What intuition lead you to this answer?

Answer:

Max depth of 4 results in the model that best generalizes to unseen data. This is the highest point on the validation score curve in the complexity performance graph above, indicating better performance on the test sets compared to other max depths.


Evaluating Model Performance

In this final section of the project, you will construct a model and make a prediction on the client's feature set using an optimized model from fit_model.

What is the grid search technique and how it can be applied to optimize a learning algorithm?

Answer:

Grid search allows us to find optimal values for multiple parameters that can help us find the best model and parameter combination for our purpose. We can use the 'GridSearchCV' function to provide the paramters we would like to vary, as well as those we want to fix, and then look for the optimal combination based on scoring functions of our choice.

Question 8 - Cross-Validation

What is the k-fold cross-validation training technique? What benefit does this technique provide for grid search when optimizing a model?
Hint: Much like the reasoning behind having a testing set, what could go wrong with using grid search without a cross-validated set?

Answer:

K-fold cross-validation is a technique that splits the entire sample in to K different segments, using k-1 segments as the training set and the final remaining segment as the validation (test) set. Then it iterates through these segments so that we have used each segment as the test set once. This allows for us to essentially estimate and test models on K different training/testing combinations and hence potentially uncover more stable relationships. Finally, the test scores from each of the K experiments are then averaged to find the final test score that we can use as our final validation score. Since grid search is essentially optimizing parameters over the sample set, the k-fold technique allows us to validate the model on the averaged score from multiple test and training sets, providing us with higher confidence with the model.

Implementation: Fitting a Model

Your final implementation requires that you bring everything together and train a model using the decision tree algorithm. To ensure that you are producing an optimized model, you will train the model using the grid search technique to optimize the 'max_depth' parameter for the decision tree. The 'max_depth' parameter can be thought of as how many questions the decision tree algorithm is allowed to ask about the data before making a prediction. Decision trees are part of a class of algorithms called supervised learning algorithms.

For the fit_model function in the code cell below, you will need to implement the following:

  • Use DecisionTreeRegressor from sklearn.tree to create a decision tree regressor object.
    • Assign this object to the 'regressor' variable.
  • Create a dictionary for 'max_depth' with the values from 1 to 10, and assign this to the 'params' variable.
  • Use make_scorer from sklearn.metrics to create a scoring function object.
    • Pass the performance_metric function as a parameter to the object.
    • Assign this scoring function to the 'scoring_fnc' variable.
  • Use GridSearchCV from sklearn.grid_search to create a grid search object.
    • Pass the variables 'regressor', 'params', 'scoring_fnc', and 'cv_sets' as parameters to the object.
    • Assign the GridSearchCV object to the 'grid' variable.
In [10]:
# TODO: Import 'make_scorer', 'DecisionTreeRegressor', and 'GridSearchCV'
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import make_scorer
from sklearn.grid_search import GridSearchCV


def fit_model(X, y):
    """ Performs grid search over the 'max_depth' parameter for a 
        decision tree regressor trained on the input data [X, y]. """
    
    # Create cross-validation sets from the training data
    cv_sets = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.20, random_state = 0)

    # TODO: Create a decision tree regressor object
    regressor = DecisionTreeRegressor(random_state=0)

    # TODO: Create a dictionary for the parameter 'max_depth' with a range from 1 to 10
    params = {'max_depth':range(1, 11)}

    # TODO: Transform 'performance_metric' into a scoring function using 'make_scorer' 
    scoring_fnc = make_scorer(performance_metric)

    # TODO: Create the grid search object
    grid = GridSearchCV(estimator=regressor, param_grid=params, scoring=scoring_fnc, cv=cv_sets)

    # Fit the grid search object to the data to compute the optimal model
    grid = grid.fit(X, y)

    # Return the optimal model after fitting the data
    return grid.best_estimator_

Making Predictions

Once a model has been trained on a given set of data, it can now be used to make predictions on new sets of input data. In the case of a decision tree regressor, the model has learned what the best questions to ask about the input data are, and can respond with a prediction for the target variable. You can use these predictions to gain information about data where the value of the target variable is unknown — such as data the model was not trained on.

Question 9 - Optimal Model

What maximum depth does the optimal model have? How does this result compare to your guess in Question 6?

Run the code block below to fit the decision tree regressor to the training data and produce an optimal model.

In [11]:
# Fit the training data to the model using grid search
reg = fit_model(X_train, y_train)

# Produce the value for 'max_depth'
print "Parameter 'max_depth' is {} for the optimal model.".format(reg.get_params()['max_depth'])
Parameter 'max_depth' is 4 for the optimal model.

Answer:

The maximum depth is 4 for the optimal model. This result is identical to the guess from question 6, as expected.

Question 10 - Predicting Selling Prices

Imagine that you were a real estate agent in the Boston area looking to use this model to help price homes owned by your clients that they wish to sell. You have collected the following information from three of your clients:

Feature Client 1 Client 2 Client 3
Total number of rooms in home 5 rooms 4 rooms 8 rooms
Neighborhood poverty level (as %) 17% 32% 3%
Student-teacher ratio of nearby schools 15-to-1 22-to-1 12-to-1

What price would you recommend each client sell his/her home at? Do these prices seem reasonable given the values for the respective features?
Hint: Use the statistics you calculated in the Data Exploration section to help justify your response.

Run the code block below to have your optimized model make predictions for each client's home.

In [13]:
# Produce a matrix for client data
client_data = [[5, 17, 15], # Client 1
               [4, 32, 22], # Client 2
               [8, 3, 12]]  # Client 3

# Show predictions
for i, price in enumerate(reg.predict(client_data)):
    print "Predicted selling price for Client {}'s home: ${:,.2f}".format(i+1, price)
Predicted selling price for Client 1's home: $391,183.33
Predicted selling price for Client 2's home: $189,123.53
Predicted selling price for Client 3's home: $942,666.67

Answer:

I would recommend the client to sell their home for at least the price predicted for the model, best case scenario being as much over that price as possible. This will provide them with best expected value.

The mean & median price we calculated earlier were 454,342 & 438,900 respectively with a corresponding standard deviation of 165,171.13. This puts Client 1's home within 1 std deviation of the mean, while Client's 2 and 3 are further away. However, in the case of Client 2, we can see that they have a higher Student-teacher ratio as well as lower rooms and a high neighborhood poverty level. As a result, the low price seems reasonable given we expected those features to have a negative impact on price. For Client 3, we can see that neighborhood poverty level is very low compared to the other clients, with more rooms and a lower student/teacher ratio. As a result, the high price is also reasonable. Overall, the prices seem in line with the summary statistics and partial impact of each feature that we discussed earlier.

Sensitivity

An optimal model is not necessarily a robust model. Sometimes, a model is either too complex or too simple to sufficiently generalize to new data. Sometimes, a model could use a learning algorithm that is not appropriate for the structure of the data given. Other times, the data itself could be too noisy or contain too few samples to allow a model to adequately capture the target variable — i.e., the model is underfitted. Run the code cell below to run the fit_model function ten times with different training and testing sets to see how the prediction for a specific client changes with the data it's trained on.

In [14]:
vs.PredictTrials(features, prices, fit_model, client_data)
Trial 1: $391,183.33
Trial 2: $424,935.00
Trial 3: $415,800.00
Trial 4: $420,622.22
Trial 5: $418,377.27
Trial 6: $411,931.58
Trial 7: $399,663.16
Trial 8: $407,232.00
Trial 9: $351,577.61
Trial 10: $413,700.00

Range in prices: $73,357.39

Question 11 - Applicability

In a few sentences, discuss whether the constructed model should or should not be used in a real-world setting.
Hint: Some questions to answering:

  • How relevant today is data that was collected from 1978?
  • Are the features present in the data sufficient to describe a home?
  • Is the model robust enough to make consistent predictions?
  • Would data collected in an urban city like Boston be applicable in a rural city?

Answer:

I would not be comfortable using the model in its current form in a real world setting due to several reasons. This is because we need to control for the impact of changes in the relationship of features over time. For instance, over time the overall poverty level may have gone down, such that a 10% neighborhood poverty level in 1978 may be considered to be a premium neighborhood in that year but a similar statistic today may be considered to be lower class. Also, there are plenty of important features that are missing, such as crime statistics, age of house, and location to name a few.

Overall the model does not seem robust enough with a variance of $73,357.39; this is evidence of a model that may be underfitted, perhaps due to the reasons mentioned in the previous paragraph.

Data collected in Boston would most likely not be applicable in a rural city and houses in rural areas are likely impacted by other features that are not relevant for the Boston housing market.